(x^2+8)/(x)+1=4(x+2)/x

Simple and best practice solution for (x^2+8)/(x)+1=4(x+2)/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+8)/(x)+1=4(x+2)/x equation:



(x^2+8)/(x)+1=4(x+2)/x
We move all terms to the left:
(x^2+8)/(x)+1-(4(x+2)/x)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We calculate fractions
(x^2+8)*x)/x^2+(-(4(x+2)*x)/x^2+1=0
We calculate fractions
((x^2+8)*x)*x^2)/(x^2+(*x^2)+(-(4(x+2)*x)*x^2)/(x^2+(*x^2)+1=0
We get rid of parentheses
((x^2+8)*x)*x^2)/(x^2+*x^2+(-(4(x+2)*x)*x^2)/(x^2+(*x^2)+1=0
We calculate fractions
*x^2+(x^2+((x^2+8)*x)*x^2)*(x^2+1)/((x^2*(x^2+(*x^2)+1)+((-(4(x+2)*x)*x^2)*x^2/((x^2*(x^2+(*x^2)+1)=0
We calculate terms in parentheses: +(x^2+((x^2+8)*x)*x^2)*(x^2+1)/((x^2*(x^2+(*x^2)+1)+((-(4(x+2)*x)*x^2)*x^2/((x^2*(x^2+(*x^2)+1), so:
x^2+((x^2+8)*x)*x^2)*(x^2+1)/((x^2*(x^2+(*x^2)+1)+((-(4(x+2)*x)*x^2)*x^2/((x^2*(x^2+(*x^2)+1
We can not solve this equation

See similar equations:

| 25=-5(-y-2)+9-2y | | (1/x+3)+(1/x+2)=1 | | 2(x+6)=7(x-4)+10 | | 4*x-(-3*x+2)-(7*x-2)=0 | | -64x+-6=-6x-22 | | 3y+2y-3(y-4)=32 | | 9=3(h-6) | | Y=$0.15x+$2.96 | | 4(6x-2)=-4x-6 | | 2x*x+18=36 | | 10(g+90)=90 | | Y=9x+1/2 | | 302=4x^2-32x-210 | | 10+8a-(a+9)=50 | | -2x/3+5=15 | | 62^x-5=238,323 | | 14+2g=32 | | 13x-14=38 | | -8v+15=-4v-70 | | z/10-35=-33 | | 5(s+25)=45 | | 8(g-91)=-8 | | 716=x4 | | -5q+-5=-95 | | 12(x-8)(3x+1)=0 | | 1/4(8x+16)=4x | | (9y-4)×3=27y-12 | | X+18=2(2x+3) | | 1=5x^2 | | 60w-6=-9w-25 | | 7=k-63/3 | | 5(4x-1.5)+12=4x-2 |

Equations solver categories